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CostFree Incremental Learning (CF-IL) Q(IT

— Previous experience is recovering by memory replay paradigm in a single learner
— No need for extracted prior knowledge, external memory
— Evaluated for both Class and Task Incremental Learning
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Paper:
PourKeshavarz, Mozhgan, et al. “Looking Back on Learned Experiences for Class/Task Incremental Learning”, ICLR
2022
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Incremental Few-Shot Object Detection ﬂ(".
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New will be learned incrementally without revisiting base classes
Learn to detect new classes using only few images

Paper: Perez-Rua, Juan-Manuel, et al. “Incremental few-shot object detection”, Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020
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Efficient Feature Transformations for ‘ (IT
Discriminative and Generative Continual -\X
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Fig 1. Transform global feature map F to a task-specific feature map H.

» Task-specific feature map transformation
« Parameter-efficient
» Feature distance maximization to improve task prediction

Paper: Verma, Vinay Kumar, et al. “Efficient feature transformations for discriminative and
generative continual learning.” CVPR 2021.
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Rehearsal Memory for Long Sequences A\‘(IT

* Memory-Augmented NNs can handle arbitrarily long sequences
« However, prone to forgetting early content
« Self-Supervised Rehearsal Training circumvents this
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« Zhang er al., “Learning to Rehearse in Long Sequence Memorization.” ICML, 2021
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Long-Range Transformers — Survey -\X‘(IT

« Transformer models are SotA for sequence modeling
* Quadratic complexity wrt input length — problem with long sequences

* Various approaches in the literature g;,.4ard Transformer- Tr| nf|rm r)TL| ‘
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therature suggestlons SllEEEEEEEEER
Tay et al., “Efficient Transformers: A Survey.” arXiv, 2022 R
Tay et al., “Long Range Arena: A Benchmark for Efficient Transformers.” ICLR, 2021
Sukhbaatar et al., “Not All Memories Are Created Equal: Learning to Forget by Expiring.” ICML 2021
Wu et al., “Memformer: The Memory-Augmented Transformer.” arXiv, 2020
Zaheer et al., “Big Bird: Transformers for Longer Sequences.” NIPS, 2020
Zhang et al., “HIBERT: Document Level Pre-Training of Hierarchical Bidirectional Transformers for Document Summarization.” ACL, 2019
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Self-Supervised Learning A\‘(IT

* A machine learning system that
uses supervised learning

loss:
techniques (e.g. NNs) to learn @ -2 log py

from automatically labelled data

e No labelled data needed softmax 50!1;‘1‘1213-:
* Explain centering
methods/applications ‘
student gy, — teacher gy,
« Emerging properties in self- o °
supervised vision transformers
(Caron et al. 2021) e
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Efficient Conditional GAN Transfer with Knowledge
AT

Propagation across Classes e e
« Task: Conditional Image Generation with GAN
* Method:

* GAN transfer method to explicitly propagate the knowledge from the old
classes to the new classes

Enforce batch normalization (BN) to learn class-specific information of
new classes with implicit knowledge sharing among the new ones.
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Papers:
* Shahbazi, Mohamad, et al. “Efficient conditional gan transfer with knowledge propagation

across classes.” CVPR 2021.

(https://openaccess.thecvf.com/content/CVPR2021/papers/Shahbazi_Efficient_Conditional_GAN_Transfer_With_Knowledge_Propagation_Across_Classes_CVPR_2021_paper.pdf)
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Vision and Language Knowledge Dlstlllatlon \‘(IT

¢ Training 7
: Cropped Q Pre-trained I I

- c !
Hepions Tnage Prooder .| Knowledge Distillation
L&
r “ ‘\
A\
éﬁ = RolAlign X i
- ﬂ[ % %
2

L, loss

8 Backbone

B Bz B
top sig
Base text embedd
Categories
At ;:;I:otn nf, Pre-trained image embeddings
a egory;
dic A s Text Encoder i o
Novel = ’
Cat Lapponia
herd: e
oy @

jove
“ategories

. Inference E
: Bi | Ba | . | Ba [P nu ' :
: - A - I
: 3‘- . Backbone D/ _ameia T @L. R | =5 | B | - | R, | RNy ———] dice :
: S RPN olAlign

i - o @ Fy 2 Ny N apponian

» Objects detection using arbitrary text description
* Append new classes without re-training of the detector
« An open-vocabulary detection method by distilling knowledge from a zero-shot

image classification model.

Paper: Gu, Xiuye et al. “Open-Vocabulary Object Detection Via Vision and Language
Knowledge Distillation”, ICLR 2022

30.11.2023 Interactive Systems Lab (ISL)
Institute for Anthropomatics and Robotics (IAR)



Human-centric dialog learning AT
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« a supervised trained dialog system can be a good base system

* humans give naturally feedback by using a dialog system (elicitation of laughter,
sentiment, ...)

 use the feedback to improve the dialog system
« pay attention to eliminate the risk to learn harmful behaviours

Supervised Dialog Training Training with Human Feedback
Via Offline-RL (Our Work)
’( Standard dialog corpora )‘

(e.g. Cornell Movies) Reinforcement Learning Training

v (With Implicit Signals)
Supervised Training
v — :
Implicit Trained RL
Trained base conversational model
model signals Table 2, 3
A

Collect human
conversations and
ratings

Filter
conversations

Paper: Natasha Jaques, Judy Hanwen Shen, et al. “Human-centric dialog training via offline
reinforcement learning”, EMNLP 2020
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Incremental Deep Neural Network Learning \‘(IT
Using Classification Confidence Thresholding =\

« model with its own architecture and initial trained set of data can identify unknown classes
during the testing phase and autonomously update itself if evidence of a new class is
detected

« threshold approach to prime neural networks for incremental learning to keep accuracies
high by limiting forgetting

* lean method to reduce resources used in the retraining

Pre-Training Data Neural Classifier
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Paper: Justin Leo and Jugal Kalita, “Incremental Deep Neural Network Learning Using
Classification Confidence Thresholding”, IEEE Transactions on Neural Networks and Learning
Systems, 2021
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Zero-Shot Task Generalization in Language A\‘(IT
Models
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Summarization

Poundland store on Whymark Avenue [...] How

The picture appeared on the wall of a
would you rephrase that in a few words?

Language models like GPT-34 have
shown to obtain reasonable zero-shot —
C a p a b| I |t| e S [thoi'g:»thﬁk%{ag bv;asﬂ t ]asc)npaaCksecdalaes oIf 1
Since then several works have been e
done in the area of instruction tuning [ '

is believed to be

Graffiti artist Banksy
behind [...]

to 5, I would give this a
finished the regular season [...]". Can
you tell me what it is?

Multi-task training

and prompt engineering Zeoshotgenerizaion |\
Natural Language Inference
- L] .
Review recent approaches in the [S“:sf:he’::hf:::ff il i
banker contacted the professors"?

area of zero-shot learning with
language models such as [1] [2] [3]

Papers (Suggestions):

« 'Multitask Prompted Training Enables Zero-Shot Task Generalization, Sanh et
al. (2022)

* 2Finetuned Language Models Are Zero-Shot Learners, Wei et al. (2021)

» SAdapting language models for zero-shot learning by meta-tuning on dataset and
prompt collections, Zhong et al. (2021)

« “4[anguage models are few-shot learners, Brown et al. (2020)
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(Few-Shot) Fine-Tuning of Pretrained Language A\‘(IT
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Models

* Review methods for (few-shot) fine-tuning of ( Bestpizzaever! +1 )€T  Justgross. €D
pretrained language models (PLM) e e g /I\

« Most current approaches involve prompt T
engineering and handcrafting o leM o (EiEE

« For example, PET (Pattern Exploiting Training?) @ | .

« PERFECT' promises few-shot learning without R : AN +1¥().1
handcrafting, by having task-specific adapter layers poo Jag)\ /_M
& multi-token label embeddings 102 c

Papers (Suggestions):

'PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models,
Mahabadi et al. (2022)

2CROSSFIT : A Few-shot Learning Challenge for Cross-task Generalization in NLP, Ye
et al. (2021)

3Prefix-Tuning: Optimizing Continuous Prompts for Generation, Li et al. (2021)
“Exploiting cloze-questions for few-shot text classification and natural language
inference, Schick et al. (2021)

30.11.2023 Interactive Systems Lab (ISL)

Institute for Anthropomatics and Robotics (IAR)



